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Abstract

To generate analysis-suitable T-splines for arbitrary topologies, in this paper we introduce a new method to deal with extraordinary
nodes in the T-mesh. Knot interval duplication method is used to extract knot vectors for the extraordinary nodes and spoke nodes.
From defined bicubic weighted T-spline basis functions, the extracted Bézier coefficients are modified to obtain a gap-free T-spline
surface. The boundaries shared by the first-ring neighboring Bézier elements are C0-continuous. Then we use biquartic Bézier
basis functions with optimized coefficients to increase the surface continuity to G1. Comparison with other methods shows that our
method generates T-spline surfaces with better surface continuity for analysis.
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1. Introduction

Isogeometric analysis was developed to integrate design with analysis, which uses the same basis functions for
geometrical representation and numerical simulation [1]. Compared to traditional finite element method, it has the
superior performance in accuracy and robustness [2–4]. Isogeometric analysis has been studied in different perspec-
tives and application fields, such as linear elastics [1,5,6], fluid-structure interaction [7–9], structure vibrations [10],
and electromagnetics [11], demonstrating the advantages of this new analysis method.

NURBS (Non-Uniform Rational B-splines) [1,4,12] and T-splines [13,14] are two techniques popularly used in
isogeometric analysis. Compared to NURBS, the main advantage of T-splines is that T-splines allow T-junctions in
the control mesh, and extraordinary nodes can be introduced to one single T-spline patch. Thus T-splines support
local refinement and arbitrary topologies. However, extraordinary nodes bring trouble to the basis definition in their
neighborhood. Subdivision basis functions [13] and T-spline basis functions defined on knot vectors with duplicated
knots [15] have been used to calculate the surface around the extraordinary nodes. For bicubic T-splines, the surface
continuity around the extraordinary nodes is decreased to C0 or G1.

Different methods have been developed to handle extraordinary nodes on T-spline surfaces. Templates were devel-
oped in [15], with zero-length edges inserted around the extraordinary nodes to generate gap-free T-spline surfaces.
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The surface continuity is C0-continuous within two-ring neighborhood of the extraordinary nodes. This template
method was further extended to volumetric T-spline modeling [16]. A capping method [17] calculates the Bézier
control points from T-spline control points to obtain a G1-continuous T-spline surface around the extraordinary nodes.
However, the Bézier extraction matrix cannot be obtained. Standard T-splines with an optimization scheme was de-
veloped to support extraordinary nodes in isogeometric boundary element analysis [5], as well as fluid-structure inter-
actions with hybrid variational-collocation immersed method [18]. A linear interpolation scheme was first developed
to obtain Bézier extraction matrix from T-meshes, and then the extracted Bézier element coefficients were optimized
to obtain G1 continuity around extraordinary nodes. Isogeometric spline forests were proposed to represent surfaces
and volumes of arbitrary topologies with hierarchical splines. The first-ring neighborhood of extraordinary nodes is
represent with C0 forest formed by spline trees with connected control points [19]. Subdivision basis functions can
also be used to deal with extraordinary nodes. Truncated hierarchical Catmull-Clark basis functions were used around
the extraordinary nodes [20], where the resulting surface is C1-continuous. In geometric design, higher degree basis
functions were used sometimes for better smoothness, such as using biquintic basis functions to get C1-continuous
surfaces [21], and even G2-continuous surfaces [22,23].

In this paper, we present a new knot interval duplication and optimization method to deal with extraordinary nodes.
Knot intervals influenced by the extraordinary nodes are assigned with a designated duplication method. Weighted
T-spline basis functions are defined on the designed knot vectors. With the proposed method, the obtained surface
is C0-continuous across the boundary shared by first-ring neighborhood Bézier elements, C1-continuous across the
boundary shared by first-ring and second-ring Bézier elements, and C2-continuous everywhere else. Degree elevation
is then performed to obtain biquartic Bézier coefficients within the first-ring neighborhood. An optimization procedure
is used to recalculate the coefficients, ensuring that the first-ring Bézier elements are G1-continuous.

The remainder of this paper is as follow. The weighted T-spline basis is reviewed in Section 2. We discuss the
detailed algorithm to handle extraordinary nodes in Section 3. The comparison of different methods dealing with
extraordinary nodes are given in Section 4, together with results of four different models. The conclusion is drawn in
Section 5 with the future work.

2. A Brief Review of Weighted T-splines

For details of T-splines and their application in analysis, we suggest readers to refer to [14]. Here we clarify several
necessary terminologies. T-mesh is the control mesh of a T-spline with all the topological information. For each vertex
in the T-mesh, local knot vectors are inferred by shooting rays [24], based on which the corresponding T-spline basis
functions are defined. T-mesh allows T-junctions and extraordinary nodes. T-junctions are analogous to the hanging
nodes in classical finite elements. An extraordinary node is an interior vertex (not a T-junction) with valance other than
4. T-junctions are extended to obtain the elemental T-mesh. We can extract one Bézier element from each elemental
T-mesh element.

There are different types of T-splines, and only a restricted subset can be used in analysis. The definition and
linear independence of analysis-suitable T-spline basis functions of arbitrary degree were studied in [25]. Partition of
unity and linear independence properties are prerequisites of T-spline basis functions for analysis. Analysis-suitable
T-splines have certain constraints on the T-mesh [26]. To ensure the constructed T-spline is analysis-suitable, the T-
junction extensions from two different parametric directions cannot intersect with each other. An extension algorithm
was also introduced to generate T-meshes which result in analysis-suitable T-splines. Strongly-balanced quadtree
and octree T-meshes were used in the construction of polynomial spline spaces, and the defined cubic T-spline basis
functions can be used in analysis [27]. Instead of performing T-junction extensions, modified T-splines recalculate
the T-spline basis functions [28]. The modified T-splines also satisfy linear independence and partition of unity
properties. Hierarchical analysis-suitable T-splines were also proposed with highly localized refinement algorithms,
and were utilized in adaptive isogeometric analysis [29].

The weighted T-spline was introduced in [30], which has less topological constraint over the T-mesh. T-junction
extension is not necessary for weighted T-splines. Given a basis function Nr(ξ, η) defined on locally subdivided
T-mesh without T-junction extension, refinability indicates

Nr(ξ, η) =
∑

q

cr
qNc

q(ξ, η), (1)
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Fig. 1. T-spline basis function N(ξ) (the black curve) defined on the knot vector {0, 1, 2, 3, 4} and the extracted seven weighted Bézier basis
functions (curves rendered with different colors). The seven weighted Bézier basis functions are defined on {0, 1, 1, 1, 2}, {1, 1, 1, 2, 2}, {1, 1, 2, 2, 2},
{1, 2, 2, 2, 3}, {2, 2, 2, 3, 3}, {2, 2, 3, 3, 3} and {2, 3, 3, 3, 4}, and the weights are 1/6, 1/3, 2/3, 2/3, 2/3, 1/3 and 1/6, respectively.

where Nc
q(ξ, η) is the qth children basis function of Nr(ξ, η). Here a children basis function refers to a basis function

defined on the refined knot vectors, which can be obtained by inserting knots to the knot vectors of Nr(ξ, η). Note that
with Nr(ξ, η) and quadtree subdivision local refinement, partition of unity may not be satisfied everywhere [30]. So
the corresponding weighted T-spline basis function with respect to Nr(ξ, η) is defined as

Nw(ξ, η) =
∑

q

hqNc
q(ξ, η), (2)

where hq are weighting coefficients, or the new weights of the children basis functions. hq can be obtained by enforcing
partition of unity satisfied everywhere. Weighted T-spline basis functions are linearly independent and meet all the
requirements of isogeometric analysis [30].

Based on the Bézier extraction algorithm [24], Nr(ξ, η) can also be represented as a linear combination of Bézier
basis functions. We have

Nr(ξ, η) =
∑

i

ciBi(ξ, η), (3)

where ci are the Bézier extraction coefficients, or weights, and Bi(ξ, η) are Bézier basis functions. ci can be obtained
from the knot insertion algorithm [31]. To explain Bézier extraction, a T-spline basis function N(ξ) together with seven
extracted Bézier basis functions are shown in Fig. 1. N(ξ) is defined on knot vector {0, 1, 2, 3, 4}. Seven Bézier basis
functions can be extracted from N(ξ), defined on knot vectors {0, 1, 1, 1, 2}, {1, 1, 1, 2, 2}, {1, 1, 2, 2, 2}, {1, 2, 2, 2, 3},
{2, 2, 2, 3, 3}, {2, 2, 3, 3, 3}, and {2, 3, 3, 3, 4} respectively.

Analogous to the weight recalculating method to enforce partition of unity [30], a different weighted T-spline
basis function can be defined by recalculating the weights of extracted Bézier basis functions. So the corresponding
weighted T-spline of Nr(ξ, η) can be represented as

N̂w(ξ, η) =
∑

i

ĉiBi(ξ, η), (4)

where ĉi are the modified weightes. Eqn. (4) will be used to define weighted T-spline basis functions to deal with
extraordinary nodes, and we will discuss how to compute ĉi in Section 3.

3. Weighted T-spline Surface Calculation

To obtain gap-free T-spline surfaces of arbitrary topologies, handling extraordinary nodes of the T-mesh is a pre-
requisite. In this section, we first introduce a new knot interval duplication method to assign knot interval vectors
to vertices. Based on the assigned knot interval vectors, bicubic T-spline basis functions are defined, and a gap-free
weighted T-spline surface is obtained. Then surface continuity elevation is performed to ensure that the extracted
first-ring Bézier elements are G1-continuous.
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3.1. Topological Constraints and Knot Interval Duplication

A local knot interval vector in the ξ direction is a sequence of knot intervals ∆Ξ = {∆ξ1,∆ξ2, · · · ,∆ξp+1}, and
its corresponding knot vector is a non-decreasing knot sequence Ξ = {ξ1, ξ2, · · · , ξp+2} such that ∆ξi = ξi+1 − ξi.
Each vertex in the T-mesh is assigned with a knot interval vector along each parametric direction, based on which
knot vectors and T-spline basis functions are defined. For vertices near extraordinary nodes, knot intervals cannot
be directly obtained in the canonical way. Here we develop a new method to assign knot intervals to such vertices.
Necessary terminologies are defined first to assist our explanation.

A spoke edge is an edge touching an extraordinary node. A spoke node is the vertex other than the extraordinary
node on a spoke edge. All the other nodes besides extraordinary nodes and spoke nodes in the T-mesh are regular
nodes. For a first-ring neighboring T-mesh element of an extraordinary node, the only regular node in this element is
a corner node. For example in Fig. 2(a), the red circle is an extraordinary node, the green circle is a spoke node, and
the black circle is a corner node. Three topological constraints are applied to the local region around the extraordinary
nodes:

(1) No other extraordinary nodes are allowed within the four-ring neighborhood of an extraordinary node;
(2) No T-junctions are allowed within the four-ring neighborhood of an extraordinary node; and
(3) The knot intervals of all the spoke edges of an extraordinary node are non-zero.

These topological constraints are the foundation of our method to obtain a gap-free T-spline surface. They ensure
that the resulting T-spline surface around an extraordinary node is not influenced by other extraordinary nodes or
T-junctions. For elements beyond the two-ring neighborhood of any extraordinary node, we assume analysis-suitable
requirements are satisfied, and weighted T-spline basis functions [30] are employed to calculate analysis-suitable
T-splines.

To define T-spline basis functions of degree p, each vertex in the T-mesh is assigned with a pair of local knot interval
vectors to define their local knot vectors. How to extract knot intervals from the T-mesh was explained in [24]. For
each vertex, we shoot rays in each parametric direction until p − 1 vertices or perpendicular edges are intersected. A
knot interval is the parametric distance between two consecutive intersections. Thus we obtain a knot interval vector
in each direction. Zero knot intervals are appended when a boundary is crossed before p − 1 intersections are found.
However, this method fails when the ray encounters an extraordinary node before p − 1 intersections. The reason
is that the parametric direction cannot be determined for the ray. In [15], zero knot intervals are appended for this
situation, resulting in repeated knots in the knot vectors.

Here we explain our interval duplication method to assign knot intervals to the vertices, which is based on the
ray-shooting method. The basic idea is to set the current knot interval equal to the previous one whenever the ray
encounters an extraordinary node. There are three different cases.

(a) (b) (c) (d) (e)

Fig. 2. Knot interval extraction near the extraordinary node. (a) Corner nodes (the black circles), spoke nodes (the green circles), extraordinary
node (the red circle) and spoke edges (the blue edges) in the T-mesh configuration; (b) corner node with ordinary knot intervals; (c) spoke node
with extended knot intervals; (d) extraordinary node with knot intervals duplicated with respect to elements in the green region; and (e) the same
extraordinary node with knot intervals duplicated with respect to the elements in the purple region.
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Regular Node (Case 1). Knot intervals are extracted by shooting rays in each parametric direction. They are not
influenced by the extraordinary nodes. For example, the extracted knot interval vectors for the regular node (the black
circle) in Fig. 2(b) are {ξ1, ξ2, ξ3, ξ4} and {η1, η2, η3, η4}.

Spoke Node (Case 2). Interval duplication is used in this case. When the ray encounters an extraordinary node,
it stops. For non-determined interval, we set it equal to the previous interval. For example for the spoke node (the
green circle) in Fig. 2(c), the first three intervals are found by the ray-shooting method, {ξ1, ξ2, ξ3}. The ray stops at
the extraordinary node (the red circle). We set the last interval equal to ξ3. The full knot interval for this spoke node
in ξ direction is {ξ1, ξ2, ξ3, ξ3}.

Extraordinary Node (Case 3). Similar to spoke nodes, the previous interval value is duplicated when an extraor-
dinary node is encountered. The interval duplication depends on the local parametric directions. For example, the
red circle is an extraordinary node in Fig. 2(d) and (e). For the elements in the green region with the given local
coordinate system, the obtained knot intervals by shooting rays are {ξ3, ξ4} and {η3, η4}. Via interval duplication, the
final knot intervals for this extraordinary node are {ξ3, ξ3, ξ3, ξ4} and {η3, η3, η3, η4}. For the elements in the purple
region, the knot intervals of the same extraordinary node are {ξ1, ξ2, ξ2, ξ2} and {η3, η3, η3, η4}.

Remark 3.1. The knot intervals are duplicated in such a way that there are no knots with the same value in the
knot vectors, and the basis functions defined upon them are all cubic polynomials.

With the introduced interval duplication method, we define T-spline basis functions for all the vertices. For a vertex
A, its associated basis function is denoted as NA. If NA has non-zero basis function value over the region covered by
a T-mesh element, then NA has support over the corresponding Bézier element. The support of an extraordinary node
or a spoke node is its two-ring neighborhood. The number of T-spline basis functions that have support over the
two-ring neighboring Bézier elements of an extraordinary node varies. For example for the element with a valance-3
extraordinary node in Fig. 3, 14 T-spline basis functions (marked with cyan circles) have support over the first-ring
neighboring Bézier elements (light blue), shown in Fig. 3(a). For the second-ring neighboring elements like the light
green elements in Fig. 3(b-c), 16 basis functions have support over it.

(a) (b) (c)

Fig. 3. Basis functions with support over a Bézier element. (a) For a Bézier element (light blue) in the first-ring neighborhood of an extraordi-
nary node with valance-3, 14 basis functions (cyan circles) have support over it; and (b-c) for a Bézier element (light green) in the second-ring
neighborhood, 16 basis functions (orange circles) have support over it.

Gap-free Requirement. For bicubic T-spline surfaces with extraordinary nodes, two-ring neighboring elements
are influenced by the extraordinary nodes. For each influenced T-mesh element, only one Bézier element is extracted
under the topological constraints given in Section 3.1. In the following when checking the T-spline surface continuity,
we check the continuity across the boundary shared by the extracted Bézier elements. To obtain a gap-free surface,
Bézier elements extracted from two adjacent first-ring neighborhood T-mesh elements should be at least C0-continuous
across the shared boundary. For example in Fig. 4, there is a valence-n extraordinary node PE , n spoke nodes
(P1

S ∼ Pn
S ) and n first-ring neighborhood elements. T-mesh element ei and ei−1 share one spoke edge PE Pi

S (the red
edge) in the T-mesh. The Bézier elements extracted from them need to meet along the shared boundary.

3.2. Gap-free Surface Calculation

For the region beyond the two-ring neighborhood of an extraordinary node, the knot interval extraction, T-spline
basis definition and Bézier element extraction follow the canonical T-spline manner [24]. For the first-ring neighboring



6 L. Liu, Y. Zhang and X. Wei / Procedia Engineering 00 (2015) 000–000

Fig. 4. Gap-free requirement for a T-mesh with an extraordinary node PE and n spoke nodes Pi
S . Two first-ring neighborhood T-mesh elements

ei−1 and ei share one red edge, and their extracted Bézier elements should be gap-free along the shared boundary.

T-mesh elements, there are two steps to calculate the weighted T-spline surface and extract Bézier elements. For each
Bézier element, we find T-spline basis functions with support on it based on the defined local coordinate system, and
calculate the corresponding Bézier coefficients. Then the gap-free requirement is applied by modifying the Bézier
coefficients.

Bézier Coefficient Calculation. Taking the valance-n extraordinary node PE in Fig. 5(a) as an example, ei is a
first-ring neighborhood T-mesh element, and ei

b is the Bézier element extracted from it; PE Pi
S is a spoke edge with

edge interval ai; Pi
C is the corner node of ei. As shown in Fig. 5(b), we define the local parametric coordinate system of

ei by setting PE as the origin, PE Pi
S following the ξ direction, PE Pi+1

S following the η direction, PE Pi+2
S following the

−ξ direction and PE Pi−1
S following the −η direction. Then the spoke nodes Pi−1

S ∼ Pi+2
S , the corner nodes Pi−2

C ∼ Pi+1
C

are selected and assigned with parametric coordinates. All other spoke nodes and corner nodes are not assigned with
parametric coordinates, even through their basis functions have support on ei

b. The reason is that in the defined local
parametric coordinate system, we cannot reach these nodes from the origin by moving along mesh edges following
the ξ or η directions. Regular nodes with support over ei

b are also assigned with local parametric coordinates.
There are 16 vertices assigned with parametric coordinates, shown in Fig. 5(a) with circles rendered in different

colors. The red circle represents the extraordinary node; the green circles represent the selected spoke nodes; the
purple circles represent the selected corner nodes and the orange circles represent the selected regular nodes. Based
on the assigned knot intervals, we define local knot vectors and T-spline basis functions for the 16 selected vertices.
The T-spline surface can be represented as

S i =
∑

j

P jN j(ξ, η) =
∑

j

P j

16∑
k=1

Mi
j,kBk(ξ, η) = PT

i MiB =

16∑
k=1

Qi
kBk(ξ, η), (5)

where P j are the selected vertices (or control points), N j(ξ, η) are the corresponding T-spline basis functions which
have support over ei, Bk(ξ, η) are Bézier basis functions, Mi

j,k is the Bézier extraction matrix obtained from Eqn. (3),
and Qi

k are the Bézier control points. Here S i denotes the T-spline surface calculated from ei. We have

Qi
k =
∑

j

P jMi
j,k. (6)

Let k = α × 4 + β, Eqn. (5) is rewritten as

S i =

16∑
k=1

Qi
kBk(ξ, η) =

4∑
α=1

4∑
β=1

Qi
αβBαβ(ξ, η). (7)

Each Bézier control point Qi
αβ has a corresponding overall coefficient

ci
αβ =

∑
j

Mi
j,α×4+β. (8)
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(c)

(a) (b) (d)

(g)

(e) (f) (h)

Fig. 5. Local parametric coordinate system, selected supporting T-spline basis functions, the order of calculated Bézier control points and coeffi-
cients for T-mesh element ei and ei−1. (a) T-mesh element ei with its selected basis functions marked with circles. Red, green, purple and orange
circles represent selected basis functions defined on the extraordinary node, spoke nodes, corner nodes and regular nodes, respectively; (b) the
local parametric coordinate system of ei, where ai represent the assigned intervals to the edges; (c) the order of calculated control points of Bézier
element ei

b extracted from ei; (d) the overall coefficient order of ei
b; (e) element ei−1 with its selected basis functions; (f) the local coordinate system

of ei−1; (g) the order of control points of Bézier element ei−1
b extracted from ei−1; and (h) the overall coefficient order of ei−1

b .

Qi
αβ have the same order with ci

αβ, as shown in Fig. 5(c) and (d), respectively.
Similarly for element ei−1, which shares the spoke edge PE Pi

S with ei, its local parametric coordinate system, the
selected T-spline basis functions, the order of Bézier control points and the overall Bézier coefficients are shown in
Fig. 5(e-h). The spoke node Pi−2

S and the corner node Pi−3
C (marked with solid dots in Fig. 5(a)) are not selected for ei

to assign with local parametric coordinates. But they are selected for ei−1. Similarly, Pi+2
S and Pi+1

C are selected for ei,
but not for ei−1.

Note that if PE is valance-3, Pi+2
S and Pi−1

S coincide. This means that in ei, Pi−1
S is assigned with two local parametric

coordinates, (0,−ai−1) and (−ai+2, 0), to obtain the knot vectors. There are two basis functions defined on Pi−1
S . With

this duplication, we can always define 16 T-spline basis functions with support over one first-ring element. In addition,
we have the following proposition.

Proposition 3.1. The Bézier elements extracted from the first-ring T-mesh elements do not meet with its adjacent
first-ring neighbors.
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Proof. Bézier elements ei
b and ei−1

b are extracted from ei and ei−1 respectively. Assume they meet along the shared
boundary, then we have

Qi
α1 = Qi−1

1α , 1 ≤ α ≤ 4. (9)

Based on the local parametric coordinate system of ei and ei−1, vertices Pi+2
S and Pi+1

C (marked with empty circles in
Fig. 5(a) and solid dots in Fig. 5(e)) have contribution to Qi

11, but not to Qi−1
11 . Pi−2

S and Pi−3
C (marked with solid dots in

Fig. 5(a) and empty circles in Fig. 5(e)) have contribution to Qi−1
11 , but not to Qi

11. Then Qi
11 , Qi−1

11 , which contradicts
the assumption of meeting along the shared boundary. Thus, we prove this proposition.

Bézier Coefficient Modification. We modify the Bézier coefficients to make the resulting T-spline surface gap-
free. Based on the local coordinate systems and assigned knot intervals, it is easy to obtain that Pi+2

S and Pi+1
C only

contribute to Qi
11, while Pi−2

S and Pi−3
C only contribute to Qi−1

11 . So we have

Qi
α1 = Qi−1

1α , 2 ≤ α ≤ 4. (10)

We only need to modify Qi
11 and Qi−1

11 to ensure ei
b and ei−1

b meet along their shared boundary. From Eqn. (5), suppose
the contribution of N i+2

S and N i+1
C to ci

11 are Mi
I(N i+2

S ),1
and Mi

I(N i+1
C ),1

respectively. The contribution of N i−2
S and N i−3

C to

ci−1
11 are Mi−1

I(N i−2
S ),1

and Mi−1
I(N i−3

C ),1
respectively, where I(N j) is the mapping of the basis function N j to its local index in

Eqn. (5). Qi
11 and Qi−1

11 should be modified as

Qi
11 = Qi

11 + Pi−2
S Mi−1

I(N i−2
S ),1 + Pi−3

C Mi−1
I(N i−3

C ),1, (11)

and
Qi−1

11 = Qi−1
11 + Pi+2

S Mi
I(N i+2

S ),1 + Pi+1
C Mi

I(N i+1
C ),1. (12)

This modification can be recognized as adding Pi−2
S and Pi−3

C , which were selected for ei−1 only, to the extraction of
ei

b. Similarly, Pi+2
S and Pi+1

C are added to the extraction of ei−1
b .

Analogously, to constrain that all the first-ring Bézier elements meet at their shared corner, all the spoke nodes and
corner nodes that are not selected for the extraction of ei

b should be added back. Qi
11 is modified as

Q̄i
11 = Qi

11 +

n∑
j=1, j,i

P̄S C M j
I(N̄S C ),1

, (13)

where P̄S C are the basis functions defined on the corner nodes and the spoke nodes not selected in the Bézier extraction
of ei, and N̄S C are the associated T-spline basis functions. Note that Q̄i

11 is constant for all the first-ring Bézier
elements. In Eqn. (8), since only ci

11 and ci−1
11 are modified, Mi is modified by adding new rows with non-zero entry

only at the first position.
Based on the assigned knot intervals and local coordinate systems, there are always 16 T-spline basis functions

selected for the extraction of one Bézier element. All the 16 basis functions are defined on local knot vectors without
repeating knots. The T-spline basis functions are linearly independent and satisfy partition of unity before coefficient
modification. Then from Eqn. (5) and Theorem 1 in [32], Mi is in full-rank and ci

11 = 1. Only the extraordinary node,
spoke nodes and corner nodes have contribution to ci

11. After Bézier coefficient modification, ci
11 is changed to

c̄i
11 = ci

11 +

n∑
j=1, j,i

M j
I(N̄S C ),1

= 1 +

n∑
j=1, j,i

M j
I(ÑS C ),1

= Mi
I(NE ),1 + Mi

I(N̄S C ),1 +

n∑
j=1, j,i

M j
I(N̄S C ),1

= Mi
I(NE ),1 +

n∑
j=1

M j
I(NS C ),1 > 1,

(14)

where NE is the basis function at the extraordinary node PE , ÑS C are the basis functions defined on the corner nodes
and spoke nodes selected for ei, and NS C are the basis functions defined on all the spoke nodes and corner nodes. To
enforce c̄i

11 = 1, we let

c̄i
11 = Mi

I(NE ),1 + γ

n∑
j=1

M j
I(NS C ),1 = 1, (15)
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where

γ =
1 − Mi

I(NE ),1
n∑

j=1
M j

I(NS C ),1

. (16)

Eqns. (15)-(16) are used to modify the first column of Mi. In the following we check the continuity between the
first-ring and second-ring neighboring Bézier elements.

Proposition 3.2. The Bézier elements extracted from the first-ring and second-ring T-mesh elements are C1-continuous
across their shared boundary.

Proof. In Fig. 5(a), T-mesh elements ei and e j share one cyan edge. Bézier elements ei
b and e j

b are extracted from

them. For ei
b, its first derivative at the boundary shared with e j

b is ∂bi(ξ,η)
∂ξ
|η=1, or bi

ξ(ξ). We adopt the notation

〈δ1, δ2, · · · , δp+1〉
p(ξ) =

p+1∑
k=1

δkBp
k (ξ), (17)

where Bp
k (ξ) is a Bernstein polynomial of degree p. Then we have

bi
ξ(ξ) = 3〈Qi

31 − Qi
41,Q

i
32 − Qi

42,Q
i
33 − Qi

43,Q
i
34 − Qi

44〉
3(ξ). (18)

Here we check the contribution from the extraordinary node PE to bi
ξ(ξ). NE is the basis function at the extraor-

dinary node PE . Since η = 1, we only check NE in the ξ direction. Based on the local parametric coordinate system
of ei, the knot vector to define NE in the ξ direction is {−2ai,−ai, 0, ai, ai + a j}. From Eqns. (5), (6) and (18), the
contribution of PE to bi

ξ(ξ) is

3PE〈c̃i
31 − c̃i

41, c̃
i
32 − c̃i

42, c̃
i
33 − c̃i

43, c̃
i
34 − c̃i

44〉
3(ξ), (19)

where c̃i
3α and c̃i

4α are the contribution of NE to ci
3α and ci

4α (1 ≤ α ≤ 4). In the ξ direction, Bézier basis functions
B1α, B2α, B3α and B4α are defined on knot vectors {−ai, 0, 0, 0, ai}, {0, 0, 0, ai, ai}, {0, 0, ai, ai, ai}, {0, ai, ai, ai, ai + a j},
respectively. Based on knot insertion algorithm, we have c̃i

3α = 2c̃i
4α. Eqn. (19) changes to

−3〈PE c̃i
41, PE c̃i

42, PE c̃i
43, PE c̃i

44〉
3(ξ). (20)

The contribution of all other T-spline basis functions to bi
ξ(ξ) has the same expression. Based on Eqn. (6), Eqn. (18)

changes to
bi
ξ(ξ) = −3〈Qi

41,Q
i
42,Q

i
43,Q

i
44〉

3(ξ). (21)

This method can also be used to obtain the the first derivative at the shared boundary from Bézier element e j
b. For

the local parametric coordinate system of e j, Pi
S is set as the origin. Its two parametric directions follow the ξ and η

directions of ei. The first derivative at the boundary shared with ei
b is ∂b j(ξ,η)

∂ξ
|η=0, or b j

ξ(ξ). We have

b j
ξ(ξ) = −3〈Q j

11,Q
j
12,Q

j
13,Q

j
14〉

3(ξ). (22)

Since Qi
4α = Q j

α1 (1 ≤ α ≤ 4), we have bi
ξ(ξ) = b j

ξ(ξ). Therefore ei
b and e j

b are C1-continuous across the shared
boundary.

Note that Bézier coefficient modification only changes Qi
11. The C1 continuity between ei and e j remains the same

after the modification. With the modified Bézier coefficients, the T-spline surface is defined as

S i = PiM̂iB, (23)

where Pi are the control points including all the spoke nodes and corner nodes, M̂i is the modified extraction matrix.

Remark 3.2. T-spline basis functions defined by the linear combination of Bézier basis functions with modified
coefficients are still analysis-suitable. The new Bézier transformation matrix M̂i is obtained by first adding new rows
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with non-zero entry only at the first position with Eqn. (13). Then the first column of the resulting matrix is further
modified based on Eqns. (15) and (16). These two matrix operations do not change the matrix rank. So M̂i is in full
rank and the modified T-spline basis functions remain analysis-suitable.

For a second-ring neighboring Bézier element, there are always 16 T-spline basis functions with support over it,
as shown in Fig. 3(b-c). We can define the local coordinate system, and each selected vertex is assigned with local
parametric coordinates. The T-spline surface is calculated with Eqn. (5), and no Bézier coefficient modification is
necessary. So the corresponding Bézier extraction over these elements is the same with the canonical manner. The
resulting surface continuity of second-ring neighboring Bézier elements and beyond is C2.

3.3. Surface Continuity Elevation

To obtain higher surface smoothness for the first-ring Bézier elements, we adopt the optimization method intro-
duced in [5] to perform continuity elevation. The necessary and sufficient condition for two adjacent Bézier elements
to be G1-continuous is that they share the same tangent plane across the boundary [33]. Degree elevation is first
performed to obtain biquartic Bézier coefficients. These coefficients are then optimized to satisfy the G1 continuity
requirement.

For an extraordinary node of valance-n, there are 20n + 1 unique Bézier coefficients and 20n constraint equations
derived to satisfy the G1 continuity requirement. These constraint equations are used to assemble the constraint matrix
Gi and the corresponding right hand side vector gi. Besides, there are 40n fairing equations to obtain the fairing matrix
Fi and the right hand side vector fi. The detailed expressions of the constraint and fairing equations are given in [5].
We obtain the optimized Bézier coefficients by solving

min ‖ Fiĉi − fi ‖2, (24)

where
ĉi = arg min

j
‖ G jĉ j − g j ‖2 . (25)

The optimization procedure handles extraordinary nodes with different valance numbers correctly. In Fig. 6, a
T-spline model with two extraordinary nodes of valance 3 and 5 is shown. The calculated T-spline surface is G1-
continuous across the red edges, C1-continuous across the yellow edges, and C2-continuous anywhere else.

(a) (b) (c) (d)

Fig. 6. Result of degree elevation for a T-spline model with two extraordinary nodes. (a) Calculated T-spline surface; (b) extracted Bézier elements,
where red and yellow edges represent Bézier element boundaries with G1-continuity and C1-continuity across them respectively; (c) zoom-in of
the first-ring neighborhood of the valance-5 extraordinary node; and (d) extracted Bézier elements of the first-ring neighborhood.

4. Results and Discussion

We compare our interval duplication algorithm with three other methods: the template method [15], the capping
method [17], and the optimization method [5]. The surface continuity, Bézier extraction matrix, and T-mesh modifi-
cation properties of these four methods are listed in Tab. 1.
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Table 1. Comparison of four methods dealing with extraordinary nodes regarding surface continuity, Bézier extraction Matrix, and T-mesh modifi-
cation.

Method Surface Continuity across Surface Continuity across Surface Continuity Bézier Extraction T-mesh
Red Edges in Fig. 6(b) Yellow Edges in Fig. 6(b) 2nd-ring Matrix Obtain Method Modification

Template C0 C0 C0 Knot Insertion YES
Capping G1 C1 C1 NONE NO

Optimization G1 C1 C1 Linear Interpolation NO
Interval Duplication G1 C1 C2 Knot Insertion NO

Template Method. Zero-interval edges are inserted around the extraordinary nodes [15], ensuring that the calcu-
lated T-spline surface is always gap-free. With this method, an extraordinary node can be within three-ring neigh-
borhood of another one. But the drawback is that repeated knots are introduced to the knot vectors, and the surface
continuity is C0 between first-ring Bézier element pairs and second-ring Bézier element pairs. Furthermore, new con-
trol points are introduced for the insertion of zero-length intervals, which increases the total degrees of freedom for
analysis.

Capping Method. The Bézier control points are directly calculated from T-spline control points [17]. They satisfy
consistency conditions, resulting in G1-continuous Bézier elements within the first-ring neighborhood. However, the
transformation matrix from T-spline basis functions to Bézier basis functions cannot be obtained, which limits its
direct usage in isogeometric analysis.

Optimization. The main difference between our method and the optimization method in [5] lies in the way to
generate the gap-free T-spline surface before coefficient optimization. In the optimization method, a linear interpo-
lation scheme is introduced to calculate Bézier control points from T-spline control points. Furthermore, the surface
between the second-ring Bézier elements is C2-continuous in our results, better than C1-continuous from the opti-
mization method.

From comparison we can conclude that our knot interval duplication method coupled with Bézier coefficients
modification result in the best surface continuity within two-ring neighborhood. No T-mesh modification is needed
for the initial Bézier extraction matrix calculation. The resulting T-spline can be directly used in isogeometric analysis.

We also tested our method on four models, including the Sphere, Eight, Tetra and Genus-three models, see Fig.
7. There are eight valance-3 extraordinary nodes on the Sphere model, eight valance-5 extraordinary nodes on the
Eight model, eight valance-6 extraordinary nodes on the Tetra model, and four valance-8 extraordinary nodes on the
Genus-three model. For each model, the final T-spline surface with extracted Bézier elements are shown first. Then it
is followed by the zoom-in first-ring neighborhood of a selected extraordinary node. The surface rendering difference
shows the surface change before and after degree elevation. The first-ring neighborhood Bézier elements are given
in the end. Our method can handle extraordinary nodes with difference valance number correctly to generate gap-
free T-spline surfaces. With Bézier coefficient optimization, the surface continuity is increased to G1 within one-ring
neighborhood.

5. Conclusion and Future Work

In conclusion, we have developed a new algorithm to handle extraordinary nodes with bicubic weighted T-spline
basis functions. Duplicated knot intervals are used to define T-spline basis functions around extraordinary nodes.
Surface continuity requirements are applied to recalculate Bézier coefficients. The extracted first-ring neighborhood
Bézier elements are C0-continuous across their shared boundaries. With biquartic Bézier coefficients and an opti-
mization procedure, the surface continuity is elevated to G1. T-splines with extraordinary nodes of various valance
numbers are tested to show the robustness of the algorithm. The main limitation of our algorithm is that we require
one extraordinary node cannot be within four-ring neighborhood of another one. So this method cannot work on T-
meshes with adjacent extraordinary nodes. A given T-mesh should be pre-processed if there are extraordinary nodes
disobeying this constraint. In the future, we plan to make the algorithm work on T-meshes with less constraints, and
extend it to arbitrary degree T-spline surfaces with extraordinary nodes as well as volumetric T-splines.
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(a) Sphere model.

(b) Eight model.

(c) Tetra model.

(d) Genus-three model.

Fig. 7. Calculated T-spline of four models. For each model, the final T-spline surface with extracted Bézier elements are shown first, followed
by the zoom-in first-ring neighborhood of a selected extraordinary node before and after continuity elevation. The first-ring neighborhood Bézier
elements are given in the end.
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basis for isogeometric analysis, Computer Methods in Applied Mechanics and Engineering 284 (2015) 1–20.
[30] L. Liu, Y. Zhang, X. Wei, Weighted T-splines with application in reparameterizing trimmed NURBS surfaces, Computer Methods in Applied

Mechanics and Engineering 295 (2015) 108–126.
[31] R. Goldman, T. Lyche, Knot insertion and deletion algorithms for B-spline curves and surfaces, Society for Industrial and Applied Mathematics–

Philadelphia, 1993.
[32] X. Li, J. Zheng, T. W. Sederberg, T. J. R. Hughes, M. A. Scott, On linear independence of T-spline blending functions, Computer Aided

Geometric Design 29 (2012) 63–76.
[33] J. Zheng, G. Wang, Y. Liang, Curvature continuity between adjacent rational Bézier patches, Computer Aided Geometric Design 9 (1992)
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